A hierarchical approach for speech-instrumental-song classification
نویسندگان
چکیده
Audio classification acts as the fundamental step for lots of applications like content based audio retrieval and audio indexing. In this work, we have presented a novel scheme for classifying audio signal into three categories namely, speech, music without voice (instrumental) and music with voice (song). A hierarchical approach has been adopted to classify the signals. At the first stage, signals are categorized as speech and music using audio texture derived from simple features like ZCR and STE. Proposed audio texture captures contextual information and summarizes the frame level features. At the second stage, music is further classified as instrumental/song based on Mel frequency cepstral co-efficient (MFCC). A classifier based on Random Sample and Consensus (RANSAC), capable of handling wide variety of data has been utilized. Experimental result indicates the effectiveness of the proposed scheme.
منابع مشابه
Music Classification based on MFCC Variants and Amplitude Variation Pattern: A Hierarchical Approach
In this work, we have presented a hierarchical scheme for classifying music data. Instead of dealing with large variety of features, proposed scheme relies on MFCC and its variants which are introduced at the different stages to satisfy the need. At the top level music is classified as song (music with voice) and instrumental (music without voice) based on MFCC. Subsequently, instrumental signa...
متن کاملA Hierarchical Approach for Audio Stream Segmentation and Classification
This paper describes a hierarchical approach for fast audio stream segmentation and classification. With this approach, the audio stream is firstly segmented into audio clips by MBCR (Multiple sub-Bands spectrum Centroid relative Ratio) based histogram modeling. Then a MGM (Modified Gaussian modeling) based hierarchical classifier is adopted to put the segmented audio clips into six pre-defined...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013